

University of La Frontera **Faculty of Engineering and Sciences Department of Mechanical Engineering**

Finite element implementation of SC11-TN coupled damage law for porous orthotropic hcp materials

Víctor Tuninetti¹ Carlos Rojas-Ulloa¹ Anne Marie Habraken²

¹: Department of Mechanical Engineering, University of La Frontera, Temuco, Chile. ²: ArGEnCo Department, MSM team, University of Liège, Liège, Belgium.

Abstract

In this research, the new coupled SC11 damage model is extended and validated adding both micromechanical laws of nucleation and coalescence to describe the damage mechanisms of Ti-6Al-4V alloy. An experimental quasi static characterization for Ti-6Al-4V specimens was performed considering data from previously published in-situ X-ray tomography and novel Scanning Electron Microscopy (SEM) measurements. The implementation of SC11-TN extended damage law into the finite element (FE) research software Lagamine and was validated by benchmarking experimental and numerical results. The prediction capabilities of SC11-TN exhibited for large strains are in good agreement with experimental results, while the near-fracture strain results open new doors for further enhancement.

SC11-TN coupled damage law

The SC11-TN extended coupled damage law is of the form: ^[1]

$$\Phi(\boldsymbol{\sigma}, \bar{\epsilon}^p) = \left[\frac{\bar{\Sigma}_{CPB06}}{\sigma_y}\right]^2 + 2q_1 D \cosh\left[\frac{3q_2(\Sigma_m - X_m)}{h\sigma_y}\right] - 1 - q_3 D^2 \le 0$$

Where:

 $\succ \overline{\Sigma}_{CPB06}$ is the CPB06 effective stress:^[2]

 $\succ \sigma_y$ is the yield stress, modeled as the Voce's isotropic hardening law:

 \succ D is the effective porosity ratio.

The increment of *D* is ruled by growth, nucleation and coalescence of voids as applied. The analytical formulations for each damage mechanism in their incremental configuration are:

• Growth:
$$\dot{f}_g = (1 - q_1 D)tr(\dot{\epsilon}^{\mathbf{p}})$$

• Nucleation: $\dot{f}_n = \frac{F_N}{S_N \sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\bar{\epsilon}^p - \epsilon_N}{S_N}\right)^2\right]\dot{\epsilon}^p$
• Coalescence: $\dot{D} = \begin{cases} \dot{f} = \dot{f}_g + \dot{f}_n & if \quad f \leq f_{cr} \\ \frac{(f_u - f_{cr})}{(f_F - f_{cr})}\dot{f} & if \quad f > f_{cr} \end{cases}$

The parameters for modeling the coalescence of voids, and the initia porosity ratio f_0 are :

al	f_0	f_u	f_F	<i>f_{cr}</i>
	5×10^{-5}	0.40	0.20	0.003

Numerical results and validation

The validation of the recently implemented SC11-TN damage law was carried out by benchmarking the numerical and experimental load-displacement curves. In addition, the previously implemented and validated^[4] CPB06 yield criterion^[2] is also considered.

Damage characterization on Ti-6Al-4V

In-situ X-ray tomography^[3]

This experimental imaging technique results in a continuous depiction of the porosity ratio measurement within a selected volume sample.

As a result, the parameters for modeling the nucleation of voids

As the highest triaxiality specimen, the R 1.5 (mm) notched bar is hereafter assessed for a damage analysis in fracture configuration.

Conclusions

- The continuum micromechanics based SC11-TN model has proven to be suitable for describing the elastoplastic and damage behavior of Ti-6Al-4V alloy.
- In comparison with the CPB06 yield criterion, the SC11-TN capability of modeling distortional hardening through the increment of effective porosity ratio has proven to be physically accurate. In order to enhance the prediction ability of the SC11-TN damage model, further work must be focused on performing new identification procedures of the elastoplastic and damage parameters in one step, acknowledging near-fracture strains. In addition, neural networks approach could be explored.

were successfully identified:

Near-fracture SEM imaging

In order to identify the damage mechanisms patterns and the coalescence model parameters, SEM images were captured in transversal and axial samples from Ti-6Al-4V notched bar submitted to a near-fracture tensile test.

References

[1]: J. Stewart, O. Cazacu, 2011. [2]: O. Cazacu, B. Plunkett, F. Barlat, 2006. [3]: L. Lecarme, E. Maire, A. Kumar K.C. et.al., 2013. [4]: V. Tuninetti, G. Gilles, P. Flores, G. Pincheira et.al., 2019.

Acknowledgements

This work was funded by the National Agency for Research and Development (ANID) Fondecyt 11170002 and the cooperation agreement WBI/AGCID SUB2019/419031 (DIE19-0005). As research director of FRS-FNRS, A.M. Habraken thanks the Belgian Scientific Research Fund FNRS for financial support